
ANDROID

Location Based Services (LBS) ,

Common Android API,

 Notification, Services &

Deployment of App.

CH - 4

Prepared By :

Ms. Kakadiya Jainam A.

POINTS OF LEARN :

 Introduction to LBS

Using Global Positioning Services (GPS)

Location and Maps

5.1 BASIC INTRODUCTION

A GPS receiver calculates its position by

precisely timing the signals sent by GPS

satellites high above the Earth.

Each satellite continually transmits messages

that include :

 The time the message was transmitted and,

 Satellite position at time of message

transmission.

GLOBAL POSITIONING SYSTEM (GPS)

 The GPS project was developed in 1973 to

overcome the limitations of previous navigation

systems, integrating ideas from several

predecessors, including a number of classified

engineering design studies from the 1960s.

The Global Positioning System (GPS) is a

space-based satellite navigation system that

provides location and time information in all

weather conditions, anywhere on or near the

Earth.

HOW GPS WORKS ?

The receiver uses the messages it receives to

determine the transit limit of each message and

computes the distance to each satellite using the

speed of light.

Each of these distances and satellites locations

defines a area.

The receiver is on the surface of each of these

areas when the distances and the satellite’s

locations are correct.

These distances and satellites location are used

to compute the location of the receiver using the

navigation equations. This location is then

displayed, perhaps with a moving map display or
Latitude (અક્ષાંશ) and Longitude (રેખષાંશ) .

Basic GPS measurements surrender only a

position, and neither speed nor direction.

However, most GPS units can automatically

derive speed and direction of movement from

two or more position measurements.

A visual example of a 24 satellites GPS

constellation in motion with the Earth

rotating. Each circle contain 8 satellites

for continues monitoring...

5.2 USING GLOBAL POSITIONING

SERVICES (GPS)

The android SDK provides resources for

accessing location via a built-in GPS hardware, if

available in hardware. Generally speaking, just

about every Android phone has some LBS

(Location Based Services) capabilities.

For example, in the United States, mobile phone

location information is used by emergency

services. That said, not all android devices are

phones, nor do all phones enable consumer-

usage of LBS services.

 If GPS features are disabled, or an Android

device does not have LBS hardware, the Android

SDK provides additional APIs for determining

alternate location provides.

5.2.1 WORKING WITH GPS

LBS services and hardware such as a built-in

accuracy GPS are optional features for Android

devices. In addition to requiring the appropriate

permissions, you can specify which optional

features your application requires within the

Android manifest file.

 If your application will only function well on devices

with some sort of method for determining the

current location, you could use the following <uses-

feature> tag in your application’s manifest file :

<uses-feature android:name “android.hardware.

location” />

5.2.2 GEOCODING LOCATIONS

GeoCoding is a processes of assigning locations

to addresses to that they can be placed as points

on a map, similar to putting pins on a paper map,

and analyzed with other spatial data. The process

assigns geographic coordinates to the original

data, hence the name geocoding.

The Android platform API provides a feature that

returns an estimated street addresses for latitude

and longitude values.

5.2.3 DEFINE THE ADDRESS LOOKUP TASK

To get an address for a given latitude and

longitude, call Geocoder. getFormLocation(),

which returns a list of addresses.

The method is synchronous, and may take a long

time to do its work, so you should call the method

from the doInBackground() method of an

AsyncTask.

Let’s consider the example to get location name

besed on longitude and latitude.

 Following the steps :

 1) Add following line of code to you manifest file.

<uses-permission android:name=“android.

permission. ACCESS_COARSE_LOCATION” />

<uses-permission android:name=“android.

permission. ACCESS_FINE_LOCATION” />

<uses-permission android:name=“android.

permission. INTERNET” />

 2) Add xml file.

 3) Add Java file.

5.3 LOCATION AND MAPS

Location and map-based apps offer a compelling

experience on mobile devices.

You can build these capabilities into your app

using the classes of the android.location package

and the Google Maps Android API.

The sections below provides an introduction to

how you can add the features.

5.3.1 LOCATION SERVICES

Android gives your applications access to the

location services supported by the device through

classes in the android.location package and the

Google Maps Android API. The sections below

provides an introduction to how you can add the

features.

The central component of the location framework

is the LocationManager system service, which

provides APIs to determine location and behaviour

of the basic device.

 As with other system services, you do not

instantiate a LocationManager directly. Rather,

you request an instance from the system by

calling getSystemService(Context.LOCATION_

SERVICE). The method returns a handle to a

new LocationManager instance.

5.3.2 GOOGLE MAPS ANDROID API

 With the Google Maps Android API, you can add

maps to your app that are based on Google

Maps data. The API automatically handles

access to Google Maps servers, data

downloading, map display, and touch gestures

on the map.

 The key class in the Google Maps Android API is

MapView. A MapView displays a map with data

obtained from the Google Maps services.

POINTS OF LEARN :

Connection to the Network

Managing network usage

Android Web API

Building Web Apps in WebView

INTRODUCTION TO ANDROID NETWORK

API

 API class includes basic takes involves in

connecting to the network, monitoring the

network connection(including connection

changes), and giving control over an app’s

network usage.

 API are describes how to parse and

consume XML data.

6.1 CONNECTING TO THE NETWORK

Here we will see how to implement a simple

application that connects to the network.

To perform the network operations described

here, your application manifest must include the

following permissions :

 <uses-permission android:name=“android.

permission.INTERNET”>

 <uses-permission

android:name=“android.permission.

ACCESS_NETWORK_STATE”>

6.1.1 CHOOSE AN HTTP CLIENT

Most network-connected Android apps are HTTP

to send and receive data. Android includes two

HTP clients : HttpURLConnection and Apache

HttpClient.

Support HTTPS, streaming uploads and

downloads, configurable timeout, IPv6, and

connection pooling. We recommend using

HttpURLConnection for applications targeted at

Gingerbread and higher.

6.1.2 CHECK THE NETWORK CONNECTION

Before your app attempts to connect to the

network, it is good practice to check whether a

network connection is available using

getActiveNetworkInfo() and isConnected().

Remember, the device may be out of range of

network, or the user may have disable both Wi-

Fi and mobile data access.

6.1.2 CHECK THE NETWORK CONNECTION

Let’s consider a basic example to check if network

is available or not.

1) Define permission in Manifest.xml :

 <uses-permission

android:name=“android.permission.INTERNET”>

 <uses-permission

android:name=“android.permission.ACCESS_N

ETWORK_STATE”>

2) Create Activity_main.xml

3) Create MainActivity.java

6.1.3 PERFORM NETWORK OPERATIONS A

SEPARATE THREAD
Network operations can involve unpredictable

delays. To prevent this from causing a poor user

experience, always perform network operations on

a separate thread from the UI.

AsyncTask class provides one of the simplest ways

to fire off a new task from the UI thread.

 In this section, the myClickHandler() method

invokes new DownloadWebpageTask() execute.

The DownloadWebpageTask class is a subclass of

AsyncTask.

DownloadWebpageTask implements the

following AsyncTask methods:

 1) doInBackground() executes the method

downloadUrl(). It passes the web page URL as

a parameter.

 2) onPostExecute() takes the returned string

and displays it in the UI.

Now lets consider an example that will display data

from your webpage.

1) provide following uses permission to your

application :

 <uses-permission

android:name=“android.permission.INTERNET”>

 <uses-permission

android:name=“android.permission.ACCESS_N

ETWORK_STATE”>

2) Make the Activity_main.xml file

3) Add code to MainActivity.java

6.1.4 CONNECT AND DOWNLOAD DATA

 In your thread that performs your network

transactions, you can use HttpURLConnection to

perform a GET and download your data. After

you call connect(), you can get an InputStream

of the data by calling getInputStream().

The doInBackground() method calls the method

downloadUrl(). The downloadUrl() method takes

the given URL and uses it to connect to the

network via HttpURLConnection. Once a

connection has been established, the app uses

the method getInputStream() to retrive the data

as an InputStream.

6.1.5 CONVERT THE INPUT STREAM TO A

STRING

An InputStream is a readable source of bytes.

Once you get an inputStream, it’s common to

code or convert it into a target data type.

 For example, if you were downloading image

data, you might decode and display it like this:

This example converts the InputStream to a

string so that the activity can display it in the UI :

 //read an InputStream and converts it to a String.

 public String readIt(InputStream stream, int len)

throws IOException,

UnsupportedEncodingException

 {

 Reader reader=null;

 reader=new InputStreamReader(stream, “UTF-8”);

 char[] buffer=new char[len];

 reader.read(buffer);

 return new string(buffer); }

6.2 MANAGING NETWORK USAGE

 If your application performs a lot of network

operations, you should provide user settings that

allow users to control your app’s data habits,

such as how often your app syncs data, whether

to perform uploads/downloads only when on Wi-

Fi, and so on.

With these controls available to them, users are

much less likely to disable your app’s access to

background data when they approach their

limits, because they can instead precisely control

how much data your app uses.

6.2.1 CHECK A DEVICE’S NETWORK

CONNECTION
A device can have various type of network

connections. At present we focus on Wi-Fi and

Data connection. Wi-Fi is typically faster. Also,

mobile data is faster if you are using 3g or in

near future 4g.

To check the network connection, you typically

use the following classes :

 ConnectivityManager : Answer queries about

the state of network connectivity. It also

notifies applications when network connectivity

changes.

6.2.1 CHECK A DEVICE’S NETWORK

CONNECTION

 NetworkInfo : Describe the status of the

network interface of given type (currently

either mobile or Wi-Fi).

This code section tests network connectivity for

Wi-Fi and mobile. It determines whether these

network interface are available or not.

Package com.bagdais.chknet;

Import com.bagdais.chknet.r.id;

Import android.net.ConnectivityManager;

Import android.net.NetworkInfo;

Import android.net.Bundle;

Import android.net.app.Activity;

Import android.net.content.Context;

Import android.view.Menu;

Import android.widget.TextView;

Public class MainActivity extends Activity

{

TextView tv;

Protected void onCreate(Bundle savedInstanceState)

{ super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 tv=(TextView)findViewById(id.textview1);

 ConnectivityManager

cm=(ConnectivityManager)getSystemService(conte

xt.CONNECTIVITY_SERVICE);

 NetworkInfo

ni=cm.getNetworkInfo(ConnectivityManager.TYPE_

MOBILE);

 boolean isMobileConn=ni.isConnected();

 string finalout=“wifi connected”+isWifiConn+”\n

mobile connected”+isMobileConn;

 tv.setText(finalout); } }

6.2.2 MANAGE NETWORK USAGE

You can implement a preferences activity that

gives users explicit control over your app using

network resources. For example :

 You might allow users to upload videos only

when the device is connected to a Wi-Fi

network.

 You might sync(or not)depending on specific

criteria such as network availability, time

interval, and so on.

To write an app that supports network access

and managing network usage, your manifest

must have right permissions and intent filters.

 The manifest excerpted below includes the

following permissions :

Android.permission.INTERNET : Allows

applications to open network socket.

Android.permission.ACCESS_NETWORK

_STATE : Allows applications to access

information about networks.

6.2.3 IMPLEMENT A PREFERENCES ACTIVITY

The sample app’s activity UserSettingActivity is

a subclass of PreferenceActivity. It display a

preferences screen that lets users specify the

following :

 Whether to display summaries for each XML

feed entry, or just a link for each entry.

 Whether to download the XML feed if any

network connection is available, or only if Wi-

Fi is available.

STEPS TO CREATE APPLICATION

 [1] Define permission in Android manifests file

 [2] Create activity_main.xml file

 [3] Create menu.xml to display settings options

to user

 [4] Create on xml folder under res. And add

settings.xml file

 [5] Create Arrays.xml file under res/values

 [6] Modify string.xml file in res/values

 [7] Create ale named UserSettingActivity.java

under src folder.

 [8] Modify MAinActivity.java file

6.3 ANDROID WEB API

Web Apps : There are essentially two ways to

deliver an application on Android as a client-side

application(developed using the Android SDK

and installed on user devices in an APK) or as a

web application.

 If you chose to provide a web-based app for

Android-powered devices, you can rest assured

that major web browsers for Android allow you to

specify viewport and style properties that make

your web pages appear at the proper size and

scale on all screen configuration.

6.4 BUILDING WEB APPS IN WEBVIEW

 If you want to deliver a web application as a part

of client application, you can do it using

WebView. The WebView class is an extension of

Android's View class that allows you to display

web page as part of your activity layout.

 It does not include any features of a fully

developed web browser, such as navigation

controls or an address bar. All that WebView

does, by default, is show web page.

A common scenario in which using WebView is

useful is when you want to provide information in

your application that you might need to update,

such as an end-user agreement or a user guide.

Within your Android application, you ca create an

Activity that contains a WebView, and that to

display your document that’s hosted online.

Another scenario in which WebView can help is

if your application provides data to the user that

always requires an Internet connection to retrive

data, such as email.

6.4.1 ADDING A WEBVIEW TO YOUR

APPLICATION
To add a WebView to your Application, simply

include the <WebView> element in your activity

layout. For example, here’s a layout file in which

the WebView files the screen :

<WebView

xmlns:android=http://scemas.android.com/apk/re

s/android

 android:id=“@+id/webview”

 android:layout_width=“fill_parent”

 android:layout_height=“fill_parent”

/>

To load a web page in the WebView use

loadUrl(). For example :

 Webview mywebview = (WebView) findViewBy

(R.id.webview);

Before this will work, however, your application

must have access to the Internet. To get

Information access, request the INTERNET

permission in your manifest file. For example :

 <manifest....>

<uses-permission android:name=“android.

permission.INTERNET”> </manifest>

6.4.2 USING JAVASCRIPT IN WEBVIEW

 If the web page you plan to load in your

WebView use JavaScript, you must enable

JavaScript for your WebView.

Once JavaScript is enable, you can also create

interfaces between your application code and

your JavaScript code.

 Enabling JavaScript : JavaScript is disable in

a WebView by default. You can enable it

through the WebSettings attached to your

WebView.

You can retrieve WebSettings with getSettings(),

then enable JavaScript with

setJavaScriptEnabled().

For example :

 WebView mywebview=(WebView) findViewById

(R.id.webview);

 WebSettings websettings=

mywebview.getSettings();

 WebSettings.setJavaScriptEnable(true);

6.4.3 HANDLING PAGE NAVIGATION

When the user clicks a link from a web page in

your WebView, the default behaviour is for

Android to launch an application that handles

URLs. You can allow the user to navigate

backward and forward through their web page

history that’s maintained by your WebView.

To open links clicked by the user, simply provide

a WebViewClient for your WebView, using

setWebViewClient().

For example :

 WebView mywebview=(WebView) findViewById

(R.id.webview);

 mywebview.setWebViewClient(new

WebViewClient());

 Navigation web page history :

When your WebView overrides URL loading, it

automatically collect a history of visited web

page. You can navigate backward and forward

through the history with goBack() and

goForward().

6.5 ANDROID TELEPHONY API

As a software developer for mobile platform, you

may be interested in incorporating telephony

features in your app.

Telephony manager provides access of

information about the telephony services on the

device.

You do not instantiate this class directly instead,

you retrieve a reference to an instance through

Context.getSystemService(Context.TELEPHON

Y_SERVICE)

Permission Required : To work with Telephony

Manager and to read the phone details we need

to add this permission statement in

AndroidManifest file.

 <uses-permission android:name=

“android.permission.READ_PHONE_STATE”>

6.5.1 GET PHONE STATUS

Using Telephony Manager we can retrieve the

current status of mobile phone and also get

some basic information about device.

Following statement will give you current

telephony object using that you can interact.

 TelephonyManager tm=(TelephonyManager)

getSystemService(Context.TELEPHONY_SE

RVICE);

6.5.2 GET PHONE TYPE CDMA/GSM/NONE

Get the type of network you are connected with

 Int phoneType=tm.getPhoneType();

 switch(phoneType)

 { case (TelephonyManager.PHONE_TYPE_ CDMA)

 // YOUR CODE ; break;

 case (TelephonyManager.PHONE_TYPE_ GSM)

 // YOUR CODE ; break;

 case (TelephonyManager.PHONE_TYPE_ CDMA)

 // YOUR CODE

 break; }

Find whether the Phone is in Roming, return

true if in roming :

 if(isRoming)

 phoneDetails+=“Is in Roming”+”YES”;

 else

 phoneDetails+=“Is in Roming”+”No”;

GET THE SIM STATE/DETAILS

Using the Object of Telephony manager class we

can get the details like SIM serial number, Country

code, Network Provider code and other Details.

int SIMstate=tm.getSimState();

switch(SIMstate)

{

case TelephonyAMnager.SIM_STATE_ABSENT

 // YOUR CODE

Break;

caseTelephonyAMnager.SIM_STATE_NETWORK_

LOCKED

 // your code

 break;

Case TelephonyAMnager.SIM_STATE_PIN_REQUEST

 // your code

 break;

case TelephonyAMnager.SIM_STATE_PUK_REQUEST

 // your code

 break;

case

TelephonyAMnager.SIM_STATE_STATE_UNKNOWN

 // your code

 break;

POINTS OF LEARN :

 Introduction

Building a Notification

Updating Notification

7.1 INTRODUCTION TO NOTIFICATION

User needs to be updating even application is

not Active at present so that user don’t miss

the important news, mails, or messages.

 We can notify user using different techniques

like Vibrating the phone, Ringing, Blinking etc.

7.1.1 NOTIFYING THE USER

A notification is a user interface element that

you display outside your app’s normal UI to

indicate that an event has occurred.

Users can choose to view the notification while

using other apps.

7.1.2 NOTIFYING WITH THE STATUS BAR

The standard location for displaying

notifications and indicators on an Android

device is the status bar that runs along the top

of the screen.

Typically, the status bar shows information such

as the current date and time.

 It also displays notifications like incoming SMS

message.

7.2 BUILDING A NOTIFICATION

1) Creating a Notification Builder :

 When creating a notification specify UI content

and actions with a NotificationCompat.Builder

object.

 For example :

NotificationCompat.Builder ncb=new

NotificationCompat.Builder(this).setSmallIcon

(R.drawable.ic_luncher). setContentTitle (

“From Notif”). setContentText(“Welcome”);

1) A samll icon, set by setSmallIcon()

2) A title, set by setContentTitle()

3) Detail text, set by setContentText();

7.2 BUILDING A NOTIFICATION

2) Define the Notification’s Action :

 Although actions are optional, you should

add at least one action to your notification.

 An action takes users directly from the

notification to an Activity in your application,

where they can look at the even that caused

the notification or do further work.

7.2 BUILDING A NOTIFICATION

3) Preserving Navigation when Starting an

Activity :

 When you start an Activity from a notification,

you must preserve the user’s expected

navigation experience. Clicking back should

take the user back through the application’s

normal work flow to home screen.

 To preserve the navigation experience, there

are two general situation : 1) Regular Activity

 2) Special Activity

7.3 UPDATING NOTIFICATIONS

1) Modify a Notification : To set up a notification

so it can be updated, issue it with a notification ID

by calling

NotificationManager.notify(ID,notification).

Example of updating notification

 Intent inte= new Intent(this, setActivity.class)

 PandingIntent

pi=PendingIntent.getActivity(this ,0,inte,

PendingIntent. FLAG_UPDATE_CURRENT);

 ncb.setContentIntent(pi);

7.3 UPDATING NOTIFICATIONS

2) Vibrating the Phone : Making Android phones

vibrate is a good way to provide feedback to users

or to interact with users even when phone volume

is low.

Android phone to vibrate in one of the following

Vibrating methods:

 i) Grant vibrating permissions : Before you

start adding the code necessary to cause your

application to vibrate, you must first notify

Android that your application expects to have

permission to use the vibrator.

 Add the uses-permission line to your Manifest.xml.

 <uses-permission

android:name=“android.permission.VIBRATE”/>

 ii) Vibrating in a given pattern : This method of

vibration is useful when you need to user with a

one-time notification. Such as receiving a text

message.

 iii) Vibrating Repeatedly Until Cancelled : This

method of vibrating is useful when you need to

notify the user of something that requires more

immediate action, such as an incoming phone call.

3) Blinking the lights: Blinking lights are a great

way to pass information silently to the user when

other forms of alert are not appropriate.

The SDK provides reasonable control over a

multicolored indicator light, when such a light is

available on the device.

For example :

 notificationCompat.Builder ncb=new

NotificationCompat.Builder(this).setLights(Color.

GREEN,1,1);

4) Customizing the Notification : Although the

default behavior in the expanded status bar tray is

sufficient for most purpose, developers can

customize how notifications are displayed if they

so choose.

To do so, developers can use the RemoteView

object to customize the notification :

RemoteViews remote=new RemoteViews(

getPackageName(),R.layout.remote);

 remote.setTextviewText(R.id.text1, “Text here”);

POINTS OF LEARN :

Services

Creating a Started Service

Bound Services

How to connect Android with PHP, MYSQL

8.1 INTRODUCTION TO SERVICES

A service is an application component that can

perform long-running operations in the

background and does not provide a user

interface.

 For example, a service might handle network

transactions, play music, perform file I/O etc.

A service can essentially two forms :

 1) Started

 2) Bound

 1) Started :

A serviec is “started” when an application

component (Such as an activity) starts it by

calling stratService().

 2) Bound :

A service “bound” when an application

component binds to it by calling

bindService().

8.2 CALLBACK METHODS

To create a service, you must create a

subclass of Service. In your implementation,

you need to override some callback methods

that handle key aspects of the service lifecycle

and provide a mechanism for components to

bind to the service. The most important

callback methods are :

1) onStartCommand() : The system calls this

method when another component, such as an

activity, requests that the service be strated, by

calling startService().

2) onBind() : The system calls this method

when another component wants to bind with

the service (such as to perform RPC), by

calling bindService().

3) onCreate() : The system calls this method

when service is first created, is first created.

4) onDestroy() : The system calls this method

when the service is no longer used and is

being destroyed.

8.2.1 DECLARING A SERVICE IN THE

MANIFEST

To declare your service, add a <service> element

as a child of the <application> element.

For example :

 <manifest>

<appliccation>

<service

android:name=“.ExampleService”/>

</appliccation>

 </manifest>

8.3 CREATING A STANDARD SERVICE

A standard service is one another component

starts by calling startService(), resulting in a call to

the service’s onStartCommand() method.

Traditionally, there are two classes you can extend

to cerate a standard service.

1) Service : This is the base class for all service,

when you extends this class, it’s important that

you create a new thread in which to do all the

service’s work.

2) IntentService: This is a subclass of Service

that uses a worker thread to handle all start

requests, one at a time. This is the best option if

you don’t required that your service handle

multiple request simultaneously.

The onStartCommand() method must return an

integer.

The return value from onStartCommand() must

be one of the following constants :

 i) START_NOT_STICKY : If the system kills the

service after onStartCommand() returns, do not

recreate the service.

 ii) START_STICKY : If the system kills the

service after onStartCommand() returns

recreate the service and call

onStartCommand().

 ii) START_REDELIVER_INTENT : If the system

kills the service after onStartCommand() returns

recreate the service and call onStartCommand()

with the last was delivered to the service.

3) Starting a Service :

You can start service to activity or another

application component by passing an Intent to

startService().

For example :

 Intent int=new Intent(this, HelloService.class);

 startService(int);

4) Creating a Bound Service :

A bound service is one that allows application

components to bind to it by calling bindService()

in order to create a long-standing connection.

You should create a bound service when you want

to interact with the service from activities and

other components in your application, through

interposes communication(IPC).

To create a bound service, you must implement

the onBind() to return Ibinder that defines the

interface for communication with the service.

8.4 BOUND SERVICE

A bound service is the server in a client-side

interface. A bound service allows components to

bind to the service.

A bound service is an implementation of the

Service class that allows other applications to

bind to it and interact with it.

To provide binding for a service, you must

implement the onBind() method.

8.4.1 CREATING A BOUND SERVICE

When creating a service that provides binding,

you must provide an IBinder that provides the

programming interface that clients can use to

interact with the service.

There are three ways you can define a interface :

1) Extending the Binder class

2) Using a Messenger

3) Using AIDL (Android Interface Definition

Language).

8.4.2 MANAGING THE LIFECYCLE OF A BOUND

SERVICE

When a service is unbound from all clients, the

Android system destroys it. As such, you don’t

have to manage the lifecycle of your service if

it’s purely a bound service.

The Android system manages it for you based

on whether it is bound to any client.

8.5 HOW TO CONNECT ANDROID WITH PHP,

MYSQL

We are going see how to make a very simple

Android app that will call a PHP script to basic

CRUD (Create, Read, Update, Delete)

operation.

The PHP script then connects to your MySQL

database to perform the operation.

So the data flow from your Android app to PHP

script then finally is stored in your MySQL db.

1) WAMP Server :

 WAMP software is one click installer which

creates an environment for developing PHP,

MySQL web application. By installing this

software you will be installing Apache, MySQL

and PHP. Alternatively can use XAMP server

also.

2) Installing and Running WAMP Server :

 Download & Install WAMP server from

www.wampserver.com/en.

http://www.wampserver.com/en

 Once you have installed wamp server, launch

the program deom start -> All Programs ->

WampServer -> StartWampServer.

3) Creating and Running PHP Project :

 Now you have the environment ready to

develop a PHP & MySQL project.

 Go to the location where you installed WAMP

server and go WWW folder and create a new

for your project. You have to place all your

project files inside this folder.

 After placing following code try to open

http://locxalhost/Bagdaisexa/test.php and you

should see a message called “Welcome,

Example from Bagdais to connect with PHP,

MySQL”.

 Test.php

 <?php

 Echo “Example from Bagdais to connect with

PHP, MySQL”

 ?>

http://locxalhost/Bagdaisexa/test.php

4) Creating MySQL Database and Tables :

 Create a simple db with one table. Now open

phpmyadmin by opening the address

http://localhost/phpmyadmin/ in your browser.

 You can use the PhpMyadmin tool to create a

database and a table.

 CREATE DATABASE bagdaisdb;

 CREATE TABLE product(pid int(10), name

varchar(20),price decimal(10,2));

http://localhost/phpmyadmin/

5) Connecting to MySQL database using PHP

6) Basic MySQL CRUD Operation using PHP

7) Creating Android Appliaction

9 DEPLOYMENT OF APPLICATIONS

 Android application publishing is a process

that makes your Android applications

available to users.

Infact, publishing is the last phase of the

Android application development process.

Here is a simplified check list which will help

you in launching your Android application:

1) Is Application tested ?

 If the answer to this is “no” then you need to

test it again and do some precise testing. In

addition to basic tests on the emulator, you

should also test your application on real,

physical device.

2) Application Performs well

 Performance is really importance, especially if

you’re programming a game. If your application

is not responsive enough in certain cases, try

to see if you can optimize those parts.

3) Checked SDK compatibility

 According to data collected around August 12,

2014, Android 2.2 is still active on 0.7% devices

that have accessed the Market.

Version Code

name

Release

date

API

level

Distribut

ion

4.4 Kitkat Oct.

31,2013

19 20.9 %

4.3 – 4.2

Jelly Bean July 24,

2013

18 , 17 7.9 %

4.1 Jelly Bean July 9,2012 16 26.5 %

4.0.3 –

4.0.4

Ice Cream

Sandwich

Dec. 16,

2011

15 10.6 %

2.3.3-

2.3.7

Gingerbre

ad

Feb. 9,2011 10 13.6 %

2.2 Froyo May 20,

2010

8 0.7 %

Now check configuration for final launch

1) Request necessary Android permissions

 <uses-permission android:name=“android.

permission.VIBRATE”>

 <uses-permission android:name=“android.

permission.INTERNET”>

2) Specify a name and icon

 <application android:lable=“@string/app_name”

android:icon=“@drawable/myIcon”>

3) Configure version manifest data

 <manifest

xmlns:android=http://schemas.android.com/

apk/res/android package=“com.example”

android:versionCode=“1”

android:versionName=“1.0.0”>

4) Set compatibility options

 android:minSdkVersion The minimum

Android platform API level on which your

application will be able to run.

 android:targetSdkVersion The API level that

your application was designed to run on.

 android:maxSdkVersion An upper limit for

compatibility.

5) Cleanup files and remove logging

 Go through your project and remove any

logging calls, old files, private data and

resource files.

6) Export Android Application

 To export an application, just open that

application project in Eclipse and select

File->Export from your Eclipse and follow

the simple steps to export your

application:

7) Next select, Export Android Application

option as shown in the above screen shot

and then click Next and again Next so that

you get following screen where you will

choose Create new keystore to store your

application.

8) Enter your password to protect your

application and click on Next button once

again. It will display following screen to let

you create a key for your application:

