
Data Structure

Using C

Ch. 02

Advanced Concept of C and

Introduction to Data Structure

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Introduction to Data Structure

 Data

 Data is a collection of information.

 Data Structure

 A data structure is a way of organizing data
items that considers not only the items
stored, but also their relationship to each
other.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Data Types :

 To store data in computer, variable is required.

 To define variable we must specify the data
type first.

 C programming language has basic three data
types available.

 Fundamental Data Type (Primary Data Type)

 Derived Data Type

 User Define Data Type

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Fundamental Data Type : (Primary Data Type)

 Primary data type can be classify into two
parts.

 Integral

 Floating Point Type

 Integral Type :

 Signed & Unsigned

 Int

 Short Int

 Long Int

 Character

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Signed & Unsigned :

 Signed Type

 When we uses the storage capacity of any
variable with positive to negative value then this
types of data will be signed data.

 Signed type of data can store positive and
negative values. It is default type.

 Unsigned :

 When we uses the storage capacity of any
variable with ONLY positive value then this types
of data will be Unsigned data. This will increase
storage range from to negative to positive.

 Unsigned type of data can store ONLY positive
values. We must add unsigned keyword before
data type when declaring the data.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Integral Type :

 Short Integer :

 Short integer can hold 1 Byte (8 Bits) in
memory.

 A short integer has two parts:

 Signed short integer

 Signed short integer can Store integer
value in the range of -128 to 127.

 Unsigned short integer.

 Unsigned short integer can Store integer
value in the range of 0 to 255.

 We can use format code as %hd for short
integer.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Integral Type :

 Integer :

 This is most commonly widely used data type
in C language.

 Any type of integer can hold 2 bytes (16Bits)
of memory.

 It has also two categories :

 Signed integer

 Signed integer can store -32768 to 32767

 Unsigned integer

 Unsigned integer can store 0 to 65535

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Integral Type :

 Long Integer :

 Long integer can hold 4 bytes (32Bits) of
memory.

 It has also two categories :

 Signed long integer

 Signed long integer can store
-2147483648 to 2147473647

 Unsigned long integer

 Unsigned long integer can store 0 to
4294967295

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Integral Type :

 Character :

 A character can hold 1 byte (8Bits) of
memory.

 To store any character string we have to use
character array.

 It has also two categories :

 Signed character

 Signed character can store -128 to 127

 Unsigned character

 Unsigned character can store 0 to 255

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Floating point :

 A floating point data type is also known as a
Real Data Type.

 It can store the value which has fraction parts.

 Floating point is further classified in to three
parts as per storage capacity.

 Float

 Float can hold 4 bytes (32Bits) of memory
with 6 decimal point. Range 3.4E-38 to
3.4E+38

 Double

 Double can hold 8 bytes (64Bits) of
memory with 6 decimal point. Range 1.7E-
308 to 1.7E+308

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Floating point :

 Long Double

 Long double can hold 10 bytes (80Bits)
of memory. Range 3.4E-4932 to
1.1E+4932

 Derived Data Type :

 Derived data types are those which are
provided by „C‟ language to us.

 We are using Array and Pointer which
are derived data type of C language.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Floating point :

 User Define Data Type :

 C language also provides facility to create our
own new data type using typedef.

Syntax :

typedef <languagedatatype> <newDataType>

Example : typedef int Num;

We can use it as

Num a, b, sum;

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Array

 An array is a collection of similar elements

of the same data type.

 These similar elements could be all integers,

or all floats, or all characters, etc.

 Individual values of array are called as

elements.

 Array can be initialized at a place where it is

declared.

 Arrays are helpful to store and access a list of

values under a single variable name.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Array

 Direct access to any element value of an array is
possible by an integer valued called the subscript.

 The subscript value specifies the relative position
of the data values within that array.

 Each array elements is referred to by specifying
the array name followed by one or more
subscripts.

 Where each subscript enclosed in square brackets
in array. Each subscript must be expressed as a
non-negative integer value.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Benefits of Array:

 If you want to specify more then one variable
then you have to specify as follow.

int sub1, sub2, sub3, sub4, sub5;

 In place of normal variable declaration we can
declare an array variable as given below.

 It means that array will be helpful to make
you work easy to process.

int sub[5];

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of Array :

(1)One-Dimensional Array or

Single Dimensional Array

(2)Two-Dimensional Array

(3)Multi-Dimensional Array

(4)String Array

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of Array :
 One-Dimensional Array

 A list of items can be given a variable name
using only one subscript and such a variable is
called a single dimensional array.

 Declaration of Array:

 Like any other variables, arrays must be
declared before they are used.

 Array declaration specifies the data type of
array elements like,

int, float etc. and the size of the array.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of Array :
 Syntax :

DataType VariableName[size];

 Purpose :

 To declare single dimensional array we can
use above syntax.

 Example :

int sub[6];

char name[10];

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. Write a program to store 5 values
in an array and print it.

int val[5];

val[0]=10;

val[1]=20;

val[2]=30;

val[3]=40;

val[4]=50;

printf("\n%d",val[0]);

printf("\n%d",val[1]);

printf("\n%d",val[2]);

printf("\n%d",val[3]);

printf("\n%d",val[4]);

Output :

10

20

30

40

50

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. Write a program to store 10 values
in an array and print it.

int val[10]={10,20,30,40,50,60,70,80,90,100};

printf("\n%d",val[0]);

printf("\n%d",val[1]);

printf("\n%d",val[2]);

printf("\n%d",val[3]);

printf("\n%d",val[4]);

printf("\n%d",val[5]);

printf("\n%d",val[6]);

printf("\n%d",val[7]);

printf("\n%d",val[8]);

printf("\n%d",val[9]);

Output :

10

20

30

40

50

60

70

80

90

100

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. Write a program to store 10 values
in an array and print it using loop

int val[10]={1,2,3,4,5,6,7,8,9,10};

int a;

for(a=0;a<10;a++)

{ printf("\nValue :“,val[a]);

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. Write a program to enter 10 values in
an array and print odd and even numbers

int val[10],a;

for(a=0;a<10;a++)

{ printf("\nEnter a Value :");

scanf("%d",&val[a]);

}

printf("\nOdd Numbers :");

for(a=0;a<10;a++)

{ if(val[a]%2!=0)

printf("\n%d",val[a]);

}

printf("\nEven Numbers :");

for(a=0;a<10;a++)

{ if(val[a]%2==0)

printf("\n%d",val[a]);

}

Odd Numbers :

1

3

5

7

9

Even Numbers:

2

4

6

8

10

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. Write a program to store a name and
print it as given...

char name1[20]={"MONARCH"};

int a;

for(a=0;a<=20;a++)

printf("\n%c",name1[a]);

Output :

M

O

N

A

R

C

H

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. Write a program to enter 5 values and
print min and max number for them.

int val[5],max,min,a,b;

for(a=0;a<5;a++)

{ printf("\nEnter Value : ");

scanf("%d",&val[a]);

}

max=val[0];

min=val[0];

for(b=0;b<5;b++)

{ if(max<val[b])

max=val[b];

if(min>val[b])

min=val[b];

}

printf("\nMax Num : %d",max);

printf("\nMin Num : %d",min);

: Output :

Max Num : 59

Min Num : -1

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of Array :
 Two-Dimensional Array

 A list of items can be store in table format by
row and column is known as Two-Dimensional
Array.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of Array :
 Syntax :

DataType VariableName[rows][columns];

 Purpose :

 To declare tow dimensional array we can use
above syntax.

 Example :

int std[3][4]; or
int std[3][4]={10,15,20,25,30,35,40,45,50,55,60,65};

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. Write a program to store 12
values using two dimensional array
and print it using nested loop

int std[3][4]={10,15,20,25,30,35,40,45,50,55,60,65};

int x,y;

for(x=0;x<3;x++)

{

for(y=0;y<4;y++)

printf("\t[%d][%d]=%d",x,y,std[x][y]);

printf("\n\n");

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of Array :

 Multi-Dimensional Array

 A list of items can be store

in table format by row and

column is with more then

two dimension is known as

Multi-Dimensional Array.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of Array :
 Syntax :

DataType VariableName[rows][col1][Col2]...;

 Purpose :

 To declare multi dimensional array we can
use above syntax.

 Example :

int std[2][2][2]; or

int std[2][2][2]={10,15,20,25,30,35,40,45};

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Array Element memory Allocation

Def. WAP to accept 10 numbers from user in an
array and sort it in descending order as well display
it.

void main()

{ int arr[10],j,k,temp;

for(j=0;j<10;j++)

{ printf("\nEnter Value %d :",j+1);

scanf("%d",&arr[j]); }

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

//Sort Descending :

for(j=0;j<10;j++)

{ for(k=j;k<10;k++)

{ if(arr[j]<arr[k+1])

{ temp=arr[j];

arr[j]=arr[k+1];

arr[k+1]=temp;

}

}

}

for(j=0;j<10;j++)

printf("%d\n",arr[j]);

getch();

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. Write a program to find maximum
element from array.

int num[10],a,max=0,n;

printf("\n How many numbers you want to enter:
");

scanf("%d",&n);

printf("\n Enter Elements: \n");

for(a=0;a<n;a++)

{ scanf("%d",&num[a]);

if(num[a]>max)

{

max=num[a];

}

}

printf("\nMaximum : %d",max);

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Pointers :

 In C programming, a pointer is a most

important topic.

 It can hold the memory address of another

variable.

 We know that memory addresses are the

locations in the computer memory where data

are stored. So we can say that we are using

pointer to access and manipulate data stored in

the memory.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Pointer :

 Pointers are very useful in many applications.

 Pointers are used to create dynamic data
structures; it built up from blocks of memory
allocated from the heap at run-time.

 A pointer can hold the address of any valid
data item, including an array, a singular
variable, a structure and a union.

 A pointer can hold the address of a function.

 Pointer also permits references to other
function to be specified as arguments to a
given function. This has the effect of passing
function as arguments to the given functions.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Pointer :

 Pointers are also strongly associated with

array and therefore provide an alternative

way to access individual array elements.

 With the use of pointer, we can also return

multiple data from a function via

arguments.

 A pointer cannot hold the address of a

constant, with one possible exception: A

string constant has an address, which can

be stored in a pointer variable indirectly.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Pointer Basics :

 To understand pointer, we have some
knowledge about memory which is given
below.

 Computer‟s memory is made up of a
sequential collection of storage cells called
bytes.

 Each byte has a number called an address
associated with it.

 In general, the addresses are numbered one
by one (સતત), starting from zero. Here, the

last address depends on the memory size.
The last address as 65535

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Pointer Basics :

 When we declare a variable in our

program, the compiler immediately

assigns a specific block of memory to store

the value of the variable.

 Every memory cell has a unique address,

this block of memory will have a unique

starting address.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Accessing the Address of Variable :

 As we know that in computer, the actual
location of a variable in the memory is
system dependent.

 That‟s why the address of a variable is
not known to us immediately.

 With the use of & operator we can find
the address of any ordinary variable.

 For Example to Find Address

int a;

printf(“%u”,&a);

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. WAP to define 5 variables and
display it’s memory address using “&”
operator.

int a,b,c,d,e;

printf("\nAddress of A = %u",&a);

printf("\nAddress of B = %u",&b);

printf("\nAddress of C = %u",&c);

printf("\nAddress of D = %u",&d);

printf("\nAddress of E = %u",&e);

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

How to define and use POINTER
variable.

 We can define pointer variable as same as
regular variable.

Syntax :

DataType *<pointerVariable>;

 We can not store any value in pointer variable.

 In pointer we can store only address of another
variable.

 Example :

int *p;

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Pointer Initializing …

 Syntax

 int a=10,*p;

 Displays the declaration of pointer as
*p.

 p=&a;

 Displays the storing address of
variable a in pointer p;

 *p

 Here is value of a return from pointer
*p.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Def. WAP to define a pointer variable
and display its use with normal
variable.

int a=10,*p;

p=&a;

printf("\n%d",*p);

*p=*p+10;

printf("\n%d",*p);

printf("\n%d",a);

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Advantages and Disadvantages of
pointers.

 Pointer are used to create dynamic data
structures.

 It is uses heap memory area to allocate
memory blocks at run time.

 A pointer can hold the address of any valid data
item, array, single variable, a function, a
structure and a union.

 Pointer is also used to transfer value to function
as argument with multiple return data values.

 Pointer are also strongly associated with arrays
and therefore provide an alternative way to
access individual array elements.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Multiple Pointers for Same Variable

 We can define more then one pointer for a

same variable.

int a=10,*x,*y,*z;

x=&a;

y=&a;

z=&a;

printf("\n*x=%d",*x);

printf("\n*y=%d",*y);

printf("\n*z=%d",*z);

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Pointer Arithmetic…

 It is also known as pointer expressions or
operations on pointer

 Pointer variables can also used in arithmetic
expressions addition, subscriptions,
multiplications, division.

 Example : int a=10, *p;

p=&a;

*p=*p+2;

 The new value of pointer variable is 12

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Array of pointers…

 As we know that we are using arrays of
integer, float and character same like as
we can define an array of pointer also.

 As we know that pointer contains an
address , an array of pointers would be
a collection of addresses.

 Syntax:

 <data-type> *array[indexer];

 In this syntax the data type refers the
data type of that dimensional array.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Array of pointers…

 For example that how we can defined
the array of pointer.

 Int *arr[10];

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Passing Parameters to the Function…

 The technique which used to pass data
from one function to another function is
known as parameter passing.

 The two ways for passing parameters
are:

 1. Pass by value (Call by value)

 2. Pass by pointer (Call by Reference)

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Passing Parameters to the Function…

1. Pass by value (Call by value)

 In pass by value, the values of the
variables are copied in the parameters
to the function.

 The called function works on the copy
and not on the original values of the
parameters.

 This means that the original data in the
calling function can not be changed.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Passing Parameters to the Function…

1. Pass by Pointer (Call by Reference)

 The memory addresses of the variables
are passed as the function argument.

 In this case, the called function directly
works on the data in the calling
function.

 Call by Reference method is often used
when manipulating arrays and strings.

 This also required when multiple values
are return by the function.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Relation between pointers and arrays.

 One dimensional array can also be used
with pointer.

 In C programming, there is a strong
relationship between pointers and
arrays.

 Any operation can be achieved by array
done with pointers.

 Int a[10],*pa;

 Pa=&a[0];

 Here is we defined array and a pointer.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 The variables can be characterized or
classified by their storage classes.

 Data types refers of value
represented by a variable whereas
storage class refers to the visibility
and the scope of the variable within
the program.

 A variable can in C can have any one
of the four classes:

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 Automatic variables:

 Any variable which is declared local to a
function or declared inside the function
in which they used is known as
automatic variable.

 The scope of the variable done within
the function itself.

 The automatic variable defined in
different functions, even if they have
same name through they are treated as
different.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 We may also use the keyword auto to
declare automatic variable.

 The default value stored in this variable
is a garbage value.

 So when we not initialized any value on
that variable, it take garbage value.

 They are created when functions are
called and destroyed automatically when
the function exited.

 It also known as a private variable or
local variable or internal variable.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 External variables:

 Variable that are both alive and active
throughout the entire program are known
as external variables.

 They are also known as global variable.

 This type of variables are declared outside
the main() function and UDF function and
they are available to all functions to use
them.

 Once a Global variable is declared all the
function can use it and any function can
change its value.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 The keyword extern can be used for
explicit declarations of external
variables.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 Static variables:

 As the name suggest, the value of static
variable remain static till the end of the
program.

 A variable can be declared static using
the keyword „static‟.

 These variables are local to the block to
which they are declared.

 The feature of static variable is, when
the function is not active at that time
the value of variable is not changed.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 The keyword extern can be used for
explicit declarations of external
variables.

 By default these variable are initialized
to zero.

 This variable is stored in memory.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 Register variables:

 We can tell the compiler that a variable
should be kept in one of the machine‟s
registers, instead of keeping in the
memory where all the variables are
stored.

 When variables are required very often
during the program, they may be
declared as register variable.

 Register variable can be defined by
using „register‟ keyword.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 It is a special storage areas within a
computer‟s CPU.

 All the arithmetic and logical operations
are carried out with this registers.

 Many compilers allow only integer and
character variable to keep in register
but ANSI should not restrict any.

 Since a register access is much faster
then a memory access, keeping the
frequency accessed variable in the
register will lend to faster execution of
program.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Scope rules and storage classes…

 Generally, the register variables are
used as loop counters which are used
multiple times in the program.

 We must be careful when we are using
register variable because they are very
few CPU registers and many of the
might been busy in other processing.

 If the registers are not available, the
variable is treated like the automatic
variable.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 In C language, variables are declare and
memory occupied by program.

 There are mainly two types of memory
allocation:

 A variable which declared in block with
fixed in size and when program will be
executed at that time space is allocated
which never free is called as Static
Allocation.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 A variable which declared in block and
when the block will be ended, the
memory will freed is called as Automatic
Allocation.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 Dynamic Memory Allocation:

 It means that we create variable or occupy
memory allocation of variable at run time.

 That called as Dynamic Memory Allocation.

 The advantages of are given below:

 1. When programmer actually needs to
use memory space at that time
dynamically allocates. So it save memory
space.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

2. Programmer not need to know in
advance how many variables we
needed.

 For example, assume that programmer
wants to store BCA student club member
name in array but we don‟t know how
many students will join the club.

 So we just make an array enough large
that every student name can store in array
but that is a huge waste of memory.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 A better way is Dynamic Memory
Allocation(DMA) to store large amount
of data.

 So in other words we can say that,
allocating memory at run time is known
as dynamic memory allocation.

 The memory allocation functions are:

 Malloc

 Calloc

 free

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 malloc() function

 With the use of malloc() function, we
can allocate or reserves a specified
amount (size) of memory and returns
a pointer variable which is void type.

 It means that user can assign it to any
type of pointer.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

P=(<data type> *) malloc (size * size of
(<data type>));

 In this above syntax p is a pointer
variable of particular data type.

 The malloc() function returns a pointer of
any data type to an area of memory with
specified size.

 Example:

Int *inptr;

Inptr=(int *) malloc (100 * size of (int));

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

calloc() function

 This function is also used to dynamically
allocate memory space to derived data
type such as arrays and structures.

 As we know that malloc() function is
used to allocates a single block of
storage space and does not initialize
memory to zero but it has garbage
value.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 Whereas calloc() is used to allocates
multiple block of storage with same size
and sets all bytes to zero.

 Syntax

 P=(structure *) calloc
(num,element_size);

 The first argument num is the number
of variables(item) we want to save in
the allocated memory space.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 The second argument element_size is
the size of each variable means that
number of bytes that each
variable(item) takes.

 This function also returns a void pointer.

 If allocation of memory space is
successful, all the allocated memory is
cleaned (set to 0), and the function
returns a pointer to the first byte.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 If the calloc() function fails to allocate a
memory space, it returns a null pointer.

 Example

 Int *ip;

 Ip=(int *) calloc(100, sizeof(int));

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 free() function
 The malloc() and calloc() function is used

to dynamically allocate memory space to
the free memory area which is known as
heap area.

 This heap area is finite.
 So when our program finishes using

particular block of dynamically allocated
memory it is good to de-allocate or free
memory space for the future use and also
it will be free up resources and improve
performance(speed).

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 Syntax:

 free(ptr_var);

 The free() function de-allocate(release)
the memory block which is pointed by
ptr_var.

 This memory must have been allocated
with the use of malloc(), calloc(), or
realloc().

 If ptr_var is NULL then free() does
nothing.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dynamic Allocation and De-
Allocation of Memory…

 If we are using invalid pointer in the call
it may create problems and cause
system crash.

 Example :

 free(ptr);

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Dangling Pointer Problem…

 As we know that pointer is very useful in
many application.

 The main functionality of pointer is to
pointing to the address of any variable.

 If any pointer is pointing the memory
address of any variable, however, after
some variable has delete from that
memory location through pointer is still
pointer such memory location.

 Such pointer is known as dangling
pointer and this problem is known as
dangling pointer problem.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Structures…

Introduction :

 As we know that an array is group of
similar data items that share a common
name and its data type also same.

 A structure is a collection of one or more
variables data types grouped under a
single name for easy manipulation.

 In array, we can store more than one
element under the same name whereas
in structure we can store more than one
different data type name under the
same name.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Structures…

 A structure can contain any of C‟s data
types, including arrays and other
structures.

 Each variable within a structure is called
a member of the structure.

 Syntax

struct <struct-name>

{

Structure_member1;

Structure_member1;

}instance;

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Structures…

 Example

 structre student

 {

 int rno;

 char name[10];

 float per;

 }s1,s2;

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Structures…

Use of structure member operator (.)

 We can also access the structure
member variable same like as ordinary
variable.

 Individual structure members can be
used like other variables of the same
type.

 Structure members are accessed using
the structure member operator (.), also
called the dot operator, between the
structure variable name and the
member name.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Structures…

 Syntax:

 Var-name.member-name;

 Example

 e1.rno=10;

 e1.name=“Angel”

 e1.per=99.99;

 Printf(“Roll name is:%d”,e1.rno);

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Structures…

Arrays of Structures

 As we know that we can have structures
that contain arrays, we also have arrays
of structures.

 For example:

structure phone_book

{

char fname[10];

char lname[10];

Float phn_no;

}pb[100];

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Structures…

Pointer of Structures

 We can also address or point the
structure variable with structure pointer
itself.

 Also we can access the numbers of
structure variable with the pointer
variable.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Enumerated Constants…

 An enumeration is a one type of
constant data type which consists of a
set of named identifier (values) that
represent integer constants.

 An enumeration is also referred to as an
enumerated type because you must list
(enumerate) each of the values in
creating a name for each of them.

 Enumerated constants data type uses to
declare symbolic integer constants.

 We can say that in C enumeration
constraints have type int.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Enumerated Constants…

 Its integer identifier also known as
“enumeration set”, “enumerator
constants”, “enumerators” or
“members”.

 With the use of enum keyword, we can
create a new “type” and specify the
values it may have.

 Enumeration provide an alternative to
the #define preprocessor diretective.

 The purpose of enumerated type is to
enhance the readability of a program.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Enumerated Constants…

 Syntax
enum <enumeration-name>
{

Enumeration-list;
}

 Example
enum DAY
{

Sunday,
Monday
Etc

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Union…

 Same as struct keyword unions can also
with keyword.

 The general form of union is as below:

 union <union-name>

 {

 Union_member1

 Union_member2

 }instance;

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Union…

 In above syntax, union is the keyword;
tagname is the valid identifier name.

 In between curly braces, we have to define
numbers (any valid data types) of union.

 For example,

union sample

{

int a;

float b;

char c;

} xyz;

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Union…

 This declares a variable code of type
union sample.

 The main difference between union and
structure is of storage of memory.

 The compiler allocates a memory that is
large enough to hold the largest variable
type in the union.

 To access a union member we can use
the same syntax that we use for
structure members. That is, xyz.a ,
xyz.b ,xyz.c are all valid member
variables.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Union…

 During accessing we should make sure
that we are accessing the member
whose value is currently stored.

 For example the statement such as

 xyz.a = 379;

 xyz.b = 7859.36;

 printf(“%d”,xyz.a);

 would produce erroneous output.

 In effect, a union creates a storage
location that can be used by any one of
its members at a time.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Union…

 When a different member is assigned a
new Value, the new value supersedes
the previous Member‟s value.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Union…

Struct Union

In structure each member

has its own location

In union, all the member uses the

same memory location and the

size of location is depending on

the data type which can hold more

bytes.

If structure is following:

structure student

{

int no,tot;

char name;

float prec;

}

sizeof() will return 9.

If union is following:

union student

{

int no,tot;

char name;

float prec;

}

sizeof() will return 4.

