
Data Structure Using C
Ch. 03.02

Elementary Data Structure

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

03.02 Elementary Data Structure

Syllabus

 Introduction

 Stack

 Definition

 Operations on stack

 Implementation of stacks using arrays

 Function to insert an element into the
stack

 Function to delete an element from the
stack

 Function to display the items

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Ch.5 Syllabus

 Recursion and stacks

 Evaluation of expressions using stacks

 Postfix expressions

 Prefix expression

 Queue

 Introduction

 Array implementation of queues

 Function to insert an element into the
queue

 Function to delete an element from the
queue

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Ch.5 Syllabus

 Circular queue

 Function to insert an element into the
queue

 Function for deletion from circular queue

 Circular queue with array implementation

 Deques

 Priority queues

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Stack :

 A stack is a linear Data structure where

information is based on Last In First

Out(Lifo).

 All the deletion and insertion can take place

at one end is called as TOP OF STACK(TOS).

 Static stack is implemented using array .

 Dynamic stack is implemented using nodes.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Example of Stack :

 Consider a stack of plates placed on the

counter in café.

 During the dinner time customers take

plates from the top of the stack and waiter

puts plates on the top of the stack.

 Therefore stack operation are possible only

in lifo.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Operation on stack

1. Push

2. Pop

3. Peep

4. Update

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Stack : Push (Insertion)

 When we want to insert a new value to the

stack, it is known as push operation.

 As in stack all the insertion are performed at

the end of the stack which is known as TOS.

 Stack is changed for overflow and when it is

full appropriate message is given

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Pop (Deletion)

 When we want to delete any value or node
from the stack it is known as POP operation.

 In stack all the deletion operation are
performed at one end only which is known
as TOS.

 After pop operation ,stack is checked
whether it is empty or not.

 If no more value or node in stack ,it gives
message.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Peep (View particular information)

 When we want to view information 0 value
of any node it is known as peep operation.

 Once value or node is inserted in stack we
can peep any information from stack.

 All the deletion are completed at one end
which is known as TOS.

 After view operation there are no value or
nodes in stack.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Update

 When we have inserted any value or node
and in future if we want to change /edit any
information associated at some location in
the stack then it is known as update
information.

 In this first of the entire node which is to be
updated is searched in stack and if node is
found.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Implementation of stack using array

 Stack array

 Stack array is implemented by using
array.

 The array implementation technique is
very simple and easy to implement.

 As we have to use array in stack So in
stack size is determined in the beginning
only.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Function to insert an Element into the stack

 Insert an element into the stack using PUSH.

void push()

{ int item;

if(top==MAXSIZE-1)

{ printf("\nThe Stack is FULL");

getch();

exit(0);

}else

{ printf("\nEnter Element to be Inserted :");

scanf("%d",&item);

top=top+1;

stack[top]=item;

}

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Function to delete an Element into the stack

 Delete an element from the stack using POP.

int pop()

{ int item;

if(top==-1)

{ printf("The stack is EMPTY");

getch();

exit(0);

}

else

{ item=stack[top];

top=top-1;

}

return(item);

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Function to display Elements of the stack

 Display elements from the stack.

void traverse()

{ int i;

if(top==-1)

{ printf("\The Stack is EMPTY");

getch();

exit(0);

}

else

{ for(i=top;i>=0;i--)

{ printf("Traverse the element");

printf("%d\n",stack[i]);

}

}

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
#define MAXSIZE 5
void push();
int pop();
void traverse();
int stack[MAXSIZE];
int top=-1;
void main()
{ int choice; char ch;

do
{ printf("\n1. PUSH");

printf("\n2. POP");
printf("\n3. TRAVERSE");
printf("\nEnter Your Choice :");
scanf("%d",&choice);
switch(choice)
{ case 1: push(); break;

case 2: printf("\nThe deleted element is %d",pop());break;
case 3: traverse();break;
default: printf("\nYou Entered Wrong Choice ");

}
printf("\nDo you Wish to continue(Y/N) ");
fflush(stdin);
scanf("%c",&ch);

}while(ch=='y'||ch=='Y');
}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

void push()
{

int item;
if(top==MAXSIZE-1)
{ printf("\nThe Stack is FULL");

getch();
exit(0);

}
else
{ printf("\nEnter The element to be inserted :");

scanf("%d",&item);
top=top+1;
stack[top]=item;

}
}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

int pop()
{

int item;
if(top==-1)
{

printf("The stack is EMPTY");
getch();
exit(0);

}
else
{ item=stack[top];

top=top-1;
}
return(item);

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

void traverse()
{

int i;
if(top==-1)
{ printf("\The Stack is EMPTY");

getch();
exit(0);

}
else
{ for(i=top;i>=0;i--)

{ printf("Traverse the element");
printf("%d\n",stack[i]);

}
}

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Stack Recursion

 Stacks are also important to supports
nested or recursive function calls.

 A function is called recursively if a
statement within body of function calls same
function.

 Recursive function is based on LIFO
mechanism.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Postfix Evaluation :

 The virtue of postfix notation is that it
enables easy evaluation of expressions.

 To begin with, the need for parentheses is
eliminated.

 Secondly, the priority of the operators is no
longer relevant.

 The expression can be evaluated by making
a left to right scan, stacking operands, and
evaluating operators using as operands the
correct elements from the stack and finally
placing the result onto the stack.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Prefix Evaluation :

 Prefix notation has seen wide application in

Lisp s-expressions, where the brackets are

required due to the arithmetic operators

having variable arity.

 The Ambi programming postfix reverse

polish notation is used in many stack-based

programming language like PostScript and

Forth, and the operating principle of certain

calculators, notably from HP.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

 A queue is a data structure that enforces the first-

come first-serve order, or equivalently the first-

in first-out (FIFO) order.

 That is, the element that is inserted first into the

queue will be the element that will deleted first,

and the element that is inserted last is deleted last.

 Same as an array and stack ,queue is also a linear

data structure.

 It can be used to represent a linear list.

 Insertion operation is known as INSERT(enqueue)

 Deletion operation is known as DELETE(dequeue).

QUEUE :

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

A Graphic Model of a Queue

Tail:

All new items

are added on

this end

Head:

All items are

deleted from

this end

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types of queue

 1. Static Queue

 2. Dynamic Queue

 Static Queue:

 Static queue is implemented by using arrays.

 The array implementation technique is very
simple and easy to implement.

 But there is a problem while implementing static
queue.

 As we have use array in static queue.

 The name itself suggest that it is static.

 Size of array is fixed before starting the program.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

 Dynamic queue

 Dynamic queue is implemented by using
pointers.

 The link list implementation technique is very
simple.

 It is same as singly link list.

 Here there is no problem of defining the
size of the beginning as we are using
pointers.

 So dynamic queue is any size.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Operations on Queues
 Insert(item): (also called enqueue)
 It adds a new item to the tail of the queue

 Remove(): (also called delete or dequeue)
 It deletes the head item of the queue, and

returns to the caller. If the queue is already
empty, this operation returns NULL

 getHead():
 Returns the value in the head element of the

queue
 getTail():
 Returns the value in the tail element of the

queue
 isEmpty()
 Returns true if the queue has no items

 size()
 Returns the number of items in the queue

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Circular Queue

 When a new item is inserted at the rear, the
pointer to rear moves upwards.

 Similarly, when an item is deleted from the
queue the front arrow moves downwards.

 After a few insert and delete operations the
rear might reach the end of the queue and
no more items can be inserted although the
items from the front of the queue have been
deleted and there is space in the queue.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Deques :

 It is a double-ended queue.

 Items can be inserted and deleted from
either ends.

 More versatile data structure than stack or
queue.

 E.g. policy-based application (e.g. low
priority go to the end, high go to the front)

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Priority Queues

 More specialized data structure.

 Similar to Queue, having front and rear.

 Items are removed from the front.

 Items are ordered by key value so that the
item with the lowest key (or highest) is
always at the front.

 Items are inserted in proper position to
maintain the order.

