
C++
Operator Overloading AND

Type Conversion,

Inheritance

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Concept Of Operator Overloading

 C++ introduces a striking feature known as

Operator Overloading that enables us to

give a special meaning to an operator.

 In simple terms, using Operator

Overloading we can change the meaning of

an operator to apply it to objects.

 For example, the + operator can be used to

add two numbers of any primitive types. We

can overload the + operator to apply it on

the objects of a class.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Concept Of Operator Overloading

 List Of Operator that cannot be overloaded

Operator Operator Name

Symbol

sizeof() Size Of Operator

?: Conditional Operator

:: Scope Resolution Operator

. and .* Member Access Operators

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Concept Of Operator Overloading

 Remember that when we overload on

operator, we cannot change its syntax.

 If we overload binary operator +, it will

remain binary operator and will perform

operation on two operands.

 Here, the basic meaning of the operators is

not changed when we overload them. It

implies that its original meaning still

remains same on normal operands.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Overloading Unary and Binary Operators:

 Overloading Unary Operators :

 Unary operators are the once that take

only one operand such as unary minus

operator.

 The unary minus (-) operator simply

changes the sing of the number.

 Example:

a=5;

b=-a;

This unary operator will

convert the positive value to

negative value.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Overloading Unary and Binary Operators:

 Syntax :

Return_type operator Operator_Symbol(Args)

{

//Code For Overloading

}

 Here, the operator is a keyword to specify that

the function defines operator overloading.

 The operator symbol specifies the symbol of

the operator you want to overload.

 We can pass arguments to the operator

function if needed.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Overloading Unary and Binary Operators:

 Overloading Binary Operators :

 Binary operators perform operation on two

operands.

 The simplest binary operator is + to add two

numbers. We can overload + operator to add

objects.

 The + operator will add respected member

variables of class and return the resultant

object. Here, we have to pass an object to

the operator function so that it can perform

operation on members of both objects.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Overloading Binary Operator :
Using Friend Function :

 We can use friend function to overload

operators in place of member functions.

 It makes the function more readable as it takes

one argument to overload unary operator and

two argument to overload binary operator.

 Without using friend function, the unary

operator overloading function does not require

any argument and binary operator overloading

function needs only one argument.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Manipulation of String Using Operators :

 In C++, we can also use operator

overloading to manipulate strings.

 For Example:

 We can overload + operator to

concatenate two string objects.

 We can overload == operator to compare

two string objects.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Rules for Operator Overloading :

 There are some rules that should be
considered when using operator
overloading.

 By overloading an operator, we cannot
change the original meaning of an
operator.

 We cannot change the syntax of the
original operator. We cannot change the
rule by overloading operator.

 We can overload only existing operators.
We cannot define our own operator.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Rules for Operator Overloading :

 Some operators cannot be overloaded.

 Overloading unary operators using

member function will not take any

argument, but using friend function it will

take one argument.

 Overloading binary operators using

member function will take one argument,

but using friend function it will take two

arguments.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Rules for Operator Overloading :

 We can not use friend function to overload
some operators:

Operator Operator Name

Symbol

=. Assignment Operator

() Function Call Operator

[] Subscript or Array indexing

operator

-> Class member access operator

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Type Conversion :

 When we write an expression containing

variables of different data types, type

conversion is necessary (Whether implicit or

explicit)

 Example :

float a=12.34;

int b=a;

 In the above example, the value of a is

transferred to b, but the fractional part will

be truncated as the variable of b is integer.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Type Conversion :
 We can also applies the concept of conversion to

class.

 This can be done by performing proper type

conversion as following:

 Basic type to class type conversion

 Class type to basic type conversion

 One class to another class conversion

 Basic Type To Class Type Conversion

 To understand this situation, consider a class Test

and following statement:

Test t1;

int a;

t1=a; //int to class type conversion

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Class type to basic type conversion

 In basic type to class type conversion, we

create a constructor to perform the

conversion.

 But to perform class to basic type

conversion, we have to define a conversion

function for the type we want to convert.

operator basic_type_name()

{ //Conversion statements... }

 Here, the basic_type_name can be any basic

data type such as int, float, double etc.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Class type to basic type conversion

 We can define the operator function for the

type we want to convert into but the casting

(conversion) operator function should meet

following conditions:

 The conversion function must be the

member of class.

 The function must not specify any return

type.

 It cannot take any argument.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

One class to another class conversion:

 We may need to apply one class to another

class conversion in some cases where in an

expression there are objects of different

classes.

 In the following Example:

 We will create two classes shop1 and

shop2. We will create a constructor to

implement conversion of one class object

to another class object.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Comparison of Different Method of Conversion :

 We learned all the 3 methods of type of
conversions.

 We have to take care of some specific point
which is mentioned in the following table.

Conversion
Type

Point to
Remember

Remarks

Basic to class
type

Constructor

Example:

Test(int a)

Basic Type as argument
of the constructor.

Example:

int a;

Test t=a;

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Comparison of Different Method of Conversion :

Conversion
Type

Point to
Remember

Remarks

Class type
to basic

Casting
operator
function

Operator function of
specific basic type:

Example :

operator int()

{

}

One class to
another
class

Constructor

Example:

Obj2=Obj1;

The source class' object
as argument of the
constructor

class2(class1 c1)

{

}

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Introduction :
 Inheritance is a way by which we can get

benefit of reusability.

 In C++, a class can use some or all
properties of another class using inheritance.

 The class which is being inherited is also
known as the base class and the class that
inherits the base class is known as the
derived class.

 Defining Derived Classes :

 To define a derived class from a base class
is known as inheriting a class from a base
class.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

 By deriving a class the class can acquire
some or all properties of the base class.

 Follow is the syntax to define a derived class

class Derived_Class_Name:[private|public]
Base_Class_Name

{

//Derived class definition

};

 Here the : symbol specifies the inheritance
means it specifies that the class at the left
side of the symbol is derived class and the
class at the right side is the base class.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

 The base class can be derived either privately
or publically.

 If you do not specify any visibility, the class is
derived privately. Means the private
members of the base class remain private and
the public members also become private in the
derived class.

 There fore all the members of the base class
will be inaccessible by the object of the derived
class.

 Example :

class Derived_class:private Base_Class

{ //class definition };

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

 Here if private keyword is omitted it will have
the same effect as it is the default visibility
modifier.

 If the visibility mode is public then the private
members of base class remain private and the
public members remain public in the derived
class.

 Therefore only the public members of the base
class can be accessed by the object of the
derived class.

 Example :

class Derived_Class:public Base_Class

{ };

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types Of Inheritance :

 There are total five types of inheritance in

C++ as listed below:

 Single Inheritance

 Hierarchical Inheritance

 Multiple Inheritance

 Multi-level Inheritance

 Hybrid Inheritance

 Single Inheritance

 In single inheritance, there is only one

base class and one derived class.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types Of Inheritance : Single Inheritance

class Base

{ //Base Class Definition

};

class Derived:[public | private] Base

{ //Derived Class Definition

};

 We have to create a base class and the base

class properties are derived by a derived

class.

 Note that the derived class can not access

the private properties of its base class.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Visibility Of Modifiers :

 We had learn public and private modifiers.

 C++ support one more useful visibility
modifier that has more visibility than
private and less visibility than public
members.

Modifier

Access
Private Protected Public

Within same class Yes Yes Yes

In derived class No Yes Yes

In classes other than
derived class

No No Yes

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Visibility Of Modifiers :
 Private :

 The private members can be accessed within
the same class only.

 Protected :

 The members declared as protected can be
accessed within the same class well as they
can be accessed by the members of its
derived class also.

 Public :

 The public members can be accessed from
anywhere in the program. They can be
accessed within the same class, derived class
and from other classes also.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Types Of Inheritance: Hierarchical Inheritance

 When in a program there is only one base
class and several classes derived from the
single base class, it is known as hierarchical
inheritance.

 The general structure of a hierarchical
inheritance is :

class Base

{ //Base class definition };

class Derived1:[Public|Private] Base

{ //Derived class1 definition };

class Derived2:[Public|Private] Base

{ //Derived class2 definition };

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Hierarchical Inheritance

 In hierarchical inheritance, we can create
hierarchical classification.

 We can create multiple classes from a base
class.

 The new classes will acquire the properties
of the base class and in addition they can
have their own properties in the new
classes.

Shape

Triangle Circle

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Hierarchical Inheritance : Structure of HI

class Base

{ //Base Class definition

};

class Derived1:[public|private] Base

{ //Derived Class1 definition

};

class Derived2:[public|private] Base

{ //Derived Class2 definition

};

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Multiple Inheritance

 A class derives from more then one base classes,
then it is known as multiple inheritance.

 Structure of Multiple Inheritance.

class Base1

{ //Base Class 1 definition

};

class Base2

{ //Base Class 2 definition

};

class Derived:[public|private]Base1,
[public|private]Base2

{ //Derived class definition

};

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Multilevel Inheritance

 In multilevel inheritance we can create more
levels of inheritance.

 We can derive from a derived class.

 For Example :

 Consider a class book having member
variables book_id and name.

 We can derive this

class to add book price

and further derive it

to add other details.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Multilevel Inheritance : Structure of MI

class Base

{ //Base Class 1 definition

};

class Derived1:[public|private]Base

{ //Derived1 definition

};

class Derived2:[public|private]Dervied1

{ //Derived2 class definition

};

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Hybrid Inheritance

 Hybrid inheritance is combination of two
different types of inheritance.

 In hybrid inheritance, we can combine two
or more types of inheritance.

 For example,

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Hybrid Inheritance : Structure of HI

class Base

{ //Base Class definition

};

class Derived1:[public|private]base

{ //Derived class1 definition

};

class Derived2:[public|private]base

{ //Derived class2 definition

};

class Derived3:[public|private]Derived1,

[public|private]Derived2

{ //Derived class3 definition

};

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Virtual Base Class & Abstract Class
 Virtual Base Class:

 A can be declared as virtual by using the
virtual keyword.

 The virtual keyword can be used either
before or after the visibility modifier.

 Syntax :

class Grandparent

{

};

class Parent1:virtual public Grandparent

{

};

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Virtual Base Class
class Parent2:public virtual Grandparent

{

};

class Child:public Parent1, public Parent2

{

};

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Abstract Class

 An abstract class, as its name implies,

is a class which is not fully defined.

 Generally its objects are not created.

 It is defined so that it can be inherited

by its derived classes.

 It just provides a base for its derived

classes.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Constructors in Derived Class :

 In case of inheritance, if our base class

contains a constructor with no arguments,

the derived class does not need a

constructor. But if the base class contains a

constructor with arguments then the derived

class constructor is executed.

 In multiple inheritance, the constructors are

called in the order of the base class written.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Applications of Constructor and Destructor

 Constructors and destructors play very
important role in initialization of objects.

 Similarly constructors and destructors are
very important in inheritance.

 The main benefit of using constructor in
inheritance is that the constructors of base
class can be derived in derived class easily.

 So the reusability concept is applied to the
constructors and destructors also. It means
that the derived class can use the
constructors of base class and do not need
to initialize the members again in derived
class.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Containership, Inheritance v/s Containership

 Containership

 When in a class, object of other classes

are created as member variables, the

objects of that class will contain also

the objects created as members. This

type of relationship is known as

containership.

MONARCH SANKUL [BCA - PGDCA Coaching] Lathi Mo. 9429220505

Containership, Inheritance v/s Containership

 Inheritance V/S Containership :

 Creating object that contain another object is
different as compared to creating normal
objects.

 In the containership when the object is
created, first the member objects are created
using their constructors and then the normal
members are initialized.

 While in inheritance when the object is
created, the base class constructors are
called first and then the derived class
constructors are called based on the type of
inheritance.

