
ANDROID

Database Connectivity

& Content Provider

CH - 3

Prepared By :

Ms. Kakadiya Jainam A.

POINTS OF LEARN :

4.1 Saving Data

4.2 Saving Key-value Sets

4.3 Saving files

4.4 Saving data in SQL Database

4.5 Sending Simple data to other Apps

4.6 Receiving Simple Data from Other
databse

BASIC INTRODUCTION

SQLite is a opensource SQL database that

stores data to a text file on a device. Android

comes in with built in SQLite database

implementation.

SQLite supports all the relational datbase

features. In order to access this database , you

don't need to establish any kind of connections

for it like JDBC,ODBC e.t.c

4.1 Saving data

Most Android apps need to save data, even if

only to save information about the app state

during onPause() so the user’s progress is not

lost.

Most non-trivial apps also need to save user

setting, and some apps must manage larger

amounts of information in files and database.

 Saving key value pairs simple data types

 Saving arbitrary files in Android's file

system

 Using databases managed by SQLite

4.2 Saving Key value sets

If you have a relatively small collection of key-

values that you’d like to save, you should

used the SharedPreferences APIs.

A SharedPreferences objects points to a file

containing key-value pairs and provides

simple method to read and write them.

Each SharedPreferences files is managed by

the framework and can be private or shared.

4.2.1 Get a Handle to a SharedPreferences

You can create a new SharedPreferences files or

access an existing one by calling one of two

methods :

 1) getSharedPreferences() : Use this method

if you need multiple SharedPreferences files

identified by name, which you specify with the

first parameter. You can call this from any

Context in your app.

 2) getPreferences() : Use this from an Activity

if you need to use only one SharedPreferences

file for the activity.

For example, the following code is executed
inside a Fragment. It access a shared preference
file that’s identified by the resources string
R.String.prefernce_file_key and opens it using
the private mode so the file is accessible by only
your app.

 Context context=getActivity();

 SharedPreferences
sharedPref=context.getSharedPreferences(getSt
ring(R.string.preference_file_key),contextMODE_
PRIVATE);

 OR

 SharedPreferences sharedPref=getActivity().
getPreferences(Context.MODE_PRIVATE);

4.2.2 Write to Shared Preferences

To write to a shared Preferences file, create a

SharedPreferences. Editor by calling edit() on

your SharedPreferences.

Pass the key and value you want to write with

methods such as putInt() and putString().

Then call commit() to save the changes.

For example :

 SharedPreferences

sharedpf=getActivity().getPreferences(Context

.MODE_PRIVATE);

 SharedPreferences.Editor editor=sharedPref.

edit();

 editor.putInt(getString(R.string.saved_high_sc

ore),newHeightScore);

 editor.commit();

4.2.3 Read to Shared Preferences

To retrieve values from a shared preference file,

call methods such as getInt() and getString(),

providing the key for the value you want and

optionally a default value to return if the key isn’t

present.

For example:

 SharedPreferences sharedPref= getActivity().

getPrefereneces(Context.MODE_PRIVATE);

 int default value=getResources().getInteger

(R.String.saved_high_score_default);

 sharedPref.getInt(getString(R.String.saved_high

_score),defaultValue);

4.3 Saving Files

Android uses a file system that’s similar to

disk-based file systems on other platforms.

A file object is suited to reading or writing

large amount of data in start-to-finish order

without skipping around.

 For example, it’s good image files or anything

exchanged over a network.

4.3.1 Choose Internal or External Storage

All Android devices have two file storage area:

“Internal” and “External” storage.

Some devices divided the permanent storage

space into “internal” and “external” partitions,

so even without a removable storage medium,

there are always two storage space and the

API behaviour is the same whether the

external storage is removable or not.

The following lists summarize the facts about

each storage space.

 Internal storage :

 It’s always available.

 Files saved here are accessible by only your

app by default.

 When the user uninstalls your app, the

system removes all your app’s files from

internal storage.

 Internal storage is best when you want to be

sure that neither the user nor other apps can

access your files.

External storage :

 It’s not always available, because the user

can mount the external storage as USB

storage and in some cases remove it from the

device.

 It’s world-readable, so files saved here may

be read outside of your control.

 When the user uninstalls your app, the

system removes your app’s files from here

only if you save them in the directory from

getExternalFilesDir().

4.3.2 Obtain Permissions for External Storage

To write to the external storage, you must

request the WRITE_EXTERNAL_STORAGE

permission in your manifest file :

 <manifest...>

 <uses-permission

 android:name=“android.permission.WRITE_

 EXTERNAL_STORAGE” />

 </manifest>

4.3.3 Save Files on Internal Storage

When saving a files to internal storage, you can

acquire the appropriate directory as a File by

calling one of two methods:

 1) geFilesDir() : Returns a File representing

an internal directory for your app.

 2) getCachDir() : Returns a File representing

an internal directory for your app’s temporary

cache files. If the system begins running low

on storage, it may delete your cache files

without warning.

For example, here’s how to write some text to

a file :

 String data=edata.getText.toString();

 FileOutputStream fos;

 try { fos=openFileOutput(filename, Context.

MODE_PRIVATE);

 fos.write(data.getBytes());

 fos.close();

 Toast.makeText(MainActivity.this, “data written

done”, Toast.LENGTH_LONG).show();

 }catch(Exception e) {

 Toast.makeText(MainActivity.this, e.toString(),

Toast.LENGTH_LONG).show();

4.3.3 Save Files on External Storage

Because the external storage may be

unavailable such as when the user has

mounted the storage to a PC or has removed

the SD card that provides the external storage

you should always verify that the volume is

available before accessing it.

Although the external storage is modify by the

user and other apps, there are two categories of

files you might save here :

Public isExternalStorageWritable() {

Sting state=Environment.getExternalStorageState();

If(Envoronment.MEDIA_MOUNTED.equals(state))

{

Return true;

}

Returns false;

 Public files :Files should be freely available

by the user and other apps and to the user.

For ex, photos captured by your app or

other downloaded files.

 Private files : Files that rightfully belong to

your app and should be declared when the

user uninstalls your app.

For ex, additional resources downloaded by

your app or temporary media files.

4.3.4 Delete File

You should always delete files that you no

longer need. The most straightforward way to

delete a file is to have the opened file reference

call delete() on itself.

 myFile.delete();

 If the file is saved on internal storage, you can

also ask the Context to locate and delete a file

by calling deleteFile():

 myContext.deleteFile(fileName);

4.4 Saving Data in SQL Databases

Saving data to a database is ideal for repeating

data, such as contact information. This class

assumes that you are familiar with SQL

database in general and helps you get started

with SQLite databases on Android.

Define a Schema and Contract : One of the

main principles of SQL databases is the

schema is the schema: a formal declaration of

how the database is organized. The schema is

reflected in the SQL statements that you use to

create your database.

4.4.1 Create a Database Using a SQL Helper

Once you have define how your database looks,

you should implement methods that create and

maintain the database and table. Here are some

typical statements that create and delete a table:

Private static final String TEXT_TYPE= “TEXT”;

Private static final String COMMA_SEP= “,”;

Private static final String SQL CREATE ENTRIES

= “CREATE TABLE”+Bentry.TABLE_NAME+ “(“

+Bentry._ID+ “INTEGER PRIMARY KEY,” +

Bentry.COLUMN_NAME_TITLE +

TEXT_TYPE”)”;

4.4.1 Create a Database Using a SQL Helper

SQL_DELETE_ENTRIES = “DROP TABLE IF

EXISTS” + Bentry.TABLE_NAME;

Just like files that you save on the device’s

internal storage. Android stores your database in

private disk space that’s associated application.

Your data is secure, because by default this area

is not accessible to other applications.

A useful set of APIs is available in the

SQLiteOpenHelper class.

To use SQLiteOpenHelper, create a subclass that

overrides the onCreate(), onUpgrade() and

onOpen() callback methods. You may want to

implement onDowngrade(), but it’s not required.

4.4.2 Put Information into a Database

 Insert data into the database by parsing a

contentValue object to the insert() method :

 SQLiteDatabase db=mDbHelper.

getWritetableDatabase();

 contentValues values=new ContenttValues();

 long newRowid;

 newRowid=db.insert(Bentry.TABLE_NAME,Bentr

y.COLUMN_NAME_NULLABLE,values);

4.4.3 Read Information from a Database

To read from a database, use the query()

method, passing it your selection criteria and

desired columns.

The method combines elements of insert() and

update(), except the column list defines the data

you want to fetch, rather than the data to insert.

The results of the query are returned to you in a

Cursor object.

 SQLiteDatabase db= mDHelper.

getReadableDatabase();

 String[] projection= {Bentry._ID,

Bentry.COLUMN_NAME_TITLE,

Bentry.COLUMN_NAME_UPDATE};

 String

sortOrder=Bentry.COLUMN_NAME_UPDATE +

“DESC”;

 Cursor C=db.query(Bentry.TABLE_NAME,

projection, selection, null, sortOrder);

4.4.4 Delete Information from a Database

To delete rows from a table, you need to provide

selection criteria that identify the rows. The

database API provides a mechanism for creating

selection criteria that protects against SQL

injection.

The mechanism divides the selection specification

into a selection clause and selection arguments.

String selection=Bentry.COLUMN_NAME_

ENTRY_ID+ “LIKE ?”; //define where part of query

 bd.delete(table_name, selection, selectionArgs);

4.4.5 Update Information in a Database

When you need to modify a subset of your

database values, use the update() method.

Updating the table combines the content values

syntax of insert() with the where syntax of delete().

SQLiteDatabse db=mDbHelper.

getReadableDatabase();

 ContentValues values=new ContentValues();

 values.put(Bentry.COLUMN_NAME_TITLE, title);

 String selection=Bentry.COLUMN_NAME_

ENTRY_ID+ “LIKE ?”;

 String[] selectionArgs={String.valueOf(rowId)};

 int

count=db.update(BReadDbHelper.Bentry.TABLE

_NAME, values, selection, selectionArgs);

4.5 SENDING SIMPLE DATA TO OTHER

APPS

When you construct intent, you must specify the

action you want the intent to “trigger”. Android

defines several actions, including ACTION_SENT

which, as you can probably guess, indicates that

the intent is sending data from one activity to

another.

To send data to another activity, all you need to

do is specify the data and its type. Sending and

receiving data between applications with intents

is most commonly used for social sharing of

content.

Here is the code to implement this type of sharing

 Intent sendIntent=new Intent();

 sendIntent.setAction(Intent.ACTION_SEND);

 sendIntent.putExtra(Intent.EXTRA_TEXT, ”This is

my text to send”);

 sentIntent.setType(“text/plain”);

 startActivity(sendIntent);

4.5.1 Send Multiple Pieces of Content

To share multiple pieces of content, use the

ACTION_SEND_MULTIPLE action together with

a list of URIs pointing to the content.

For example, if you share mixture of image

types, it should be “image/*” to match an activity

that handles any type of images.

Here’s an Example :

 ArrayList<Uri> imageUris=new ArrayList<Uri>();

 imageUris.add(imageUri1);// add your image here

 imageUris.add(imageUri2);

 Intent shareIntent=new Intent();

 shareIntent.setAction(Intent.ACTION_SENT_MUL

TIPLE);

 shareIntent.puParcelArrayListExtra(Intent.EXTRA

_STREAM,imageUris);

 shareIntent.setType(“image/*”);

 startActivity(Intent.createChooser(shareIntent,

“Share image to….”));

4.6 RECEIVING SIMPLE DATA FROM

OTHER APPS

Just as your application can send data to other

application, so too can it easily receive data from

applications.

For example, a social networking application

would likely be interested in receiving text

content, like an interesting web URL, from

another app.

The Google+ Android application accepts both

text and single or multiple images.

4.6.1 Update Your Manifest

 Intent filters inform the system what intents an

application component is willing to accept. You

create intent filters in order to be able to receive

intents with this action.

You define an intent filter in your manifest, using

the <intent-filter> element. For example, if your

application handles receiving text content, a

single image of any type, or multiple images of

any type, your manifest would look like :

<activity android:name=“.ui.MyActivity”>

<intent-filter>

<action android:name=“android.intent.

Action.SEND” />

<category android:name=“android.intent.

catagory.DEFAULT” />

<data android:mimeType=“image/*”>

</intent-filter><intent-filter>

<action android:name=“android.intent.

Action.SEND” />

<category android:name=“android.intent.

catagory.DEFAULT” />

<data android:mimeType=“text/plain”>

</intent-filter> </activity>

